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Abstract

A theory for predicting the noise field of supersonic "propellers with realistic blade

geometries is presented. The theory, which utilizes a large-blade-count approximation,

provides an e_eient formula for predicting the radiation of sound from all three sources

of propeller noise. Comparisons with a full numerical integration indicate that the levels

predicted by this formula are quite aceurat:e. Calculations also show that, for high speed

propellers, the noise radiated by the Lighthill quadrupole source is rather substantial when

compared with the noise radiated by the blade thickness and loading sources. Results from

a preliminary application of the theory indicate that the peak noise level generated by a

supersonic propeller initially increases with increasing tip helical Mar.h number, but it

eventually reaches a plateau anddoes not increase further. The predicted trend shows

qualitative agreement with the experimental observations.

Introduction

Over the last dozen years, the renewed interest in supersonic propeller (propfan)

technology on the one hand, and the drive to meet stringent community and cabin noise

regulations on the other, have spurred a great deal of theoretical and experimental research

activity in the area of high speed rotor noise.

On the theoretical side in particular significant strides have been made towards the

development of accurate theories for predicting supersonic propeller noise. The foundation

for almost all of these theories has been the Ffowcs Williams and Hawkings 1 (FW-H)

equation, which provides a theoretical basis for calculating the radiation of sound from the

propeller blade surfaces (i.e., thickness and loading noise) as well as the sound generated

by the flow field surrounding the propeller disc (i.e., Lighthill quadrupole noise). The

noise generated by thickness and loading sources has, received a great deal of attention as

exemplified by the theories of Hanson 2 and Farassat. 3 In contrast, most of the research

in the area of propeller quadrupole noise has been of an exploratory nature (see, for

example, Hanson and Fink 4) even though conclusions from these efforts have suggested



that quadrupole radiation could be potentially significant for supersonic rotors. Recent

work by Peake and Crighton, 5 however, has reinforced the notion that quadrupole radiation

must be accounted for in predicting the noise generated by high speed propellers.

b'_om a computational point of view, prediction of propeller noise involves evaluation

of the multiple integrals appearing in FW-I-I equation. This task can be accomplished

by various methods but, in general, an accurate and detailed prediction requires the use

of numerical integration. That, in turn, necessitates the utilization of a large number of

source points to produce a realistic representation of the propeller geometry as well as the

flow field surrounding it. In practice, the number of thickness and loading sources necessary

for such a representation is sufficiently small so as to make the computation of radiation

by these two types of sources quite feasible. In contrast, a substantially larger number of

quadrupole sources needed for a faithful representation of flow field around a propeller disc

makes quadrupole noise computations considerably less viable. While the application of

various simplification schemes like the far-field approximation has yielded some measure of

success, a reallstie calculation has, for the most part, remained computationally expensive.

An appealing method for circumventing this problem, first suggested by I-Iawkings and

Lawson 6 in the context of a frequency-domain analysis, is the use of the large-blade-count

approximation to calculate the source distribution integrals appearing in FW-H equation

asymptotically. For modem, many-bladed propfan designs this approach offers a very ef-

fective alternative to direct numerical integration. The effectiveness of this approach was

demonstrated by Crighton and Parry, r who developed an asymptotic theory for propeller

thickness and loading noise radiation. In fact, this theory was also used by the authors in

Ref. 5 to assess the importance of propeller quadrupole noise. To date, however, the pub-

lished results of this theory have been limited to propellers with fairly simple geometries.

Therefore, as it stands, there is a gap between the theories which utilize full numerical

integration and can accommodate realistic blade geometries bug are rather unwieldy for

calculating noise radiation from quadrupole sources, and the asymptotic theory of Ref. 5,

which is quite efficient for quadrupole noise calculations but, so far, is restricted to simple

geometries.

The theory presented in this paper bridges that gap. It utilizes a large-blade-count

approximation to evaluate integrals in FW-I-I equation. But, unlike Refs. 5 and 7, the

asymptotics is applied to the radiation efficiency integrals instead of source distribution

integrals. This approach affords the flexibility of using realistic blade geometries while

keeping the computer time requirements small. The asymptotic analysis for thickness and

loading noise sources was presented in Envia s and shown to provide a very good agreement

with direct numerical integration. The theory is now extended to include quadrupole noise

and, therefore, for the sake of completeness the full analysis will be detailed here. Compar-

isons with a full numerical integration will then be shown and a preliminary application

of the theory to a practical problem of interest will be presented.

Analysis

The starting point for the analysis is Goldstein's 9 version of FW-H equation for the

acoustic pressure p(x, t) written in the propeller-fixed (wind tunnel) coordinate system:
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p(x,t) = - pov, _ ds(y) dr +
@)

/-_/v 02G+ Tjk dy dr
oo (_) OyiOyk

(la)

Tj_= pu_ + _j_[@- po)- c_(p- po)] Ob)

Do 0 0

where v, is the normal component of the blade surface velocity,f is the amplitude of

the aerodynamic loading on the blade and Tjk isthe Lighthillstresstensor, p, p and us

are the fluiddensity,pressure and velocitywith the subscript %" denoting their ambient

values. The velocitiesui and v, axe given relativeto a medium-fixed coordinate system

even though Eq. (la) is expressed in a propeller-fixed coordinate system. S(r) and V(r)

represent the propeller blade surfaces and volume surrounding the blades, respectively,

and nj is the component of the outward unit normal to S. It should be noted that

the convention for the direction of unit normal is opposite that of Goldstein's. y and x

represent the source and observer coordinates, respectively, r is the source time and t is

the observer (i.e., retarded) time. U0j denotes the medium convection velocity which is

equal to, and negative of, the propeller forward flight velocity. The three terms in Eq.

(la) represent contributions from the thickness, loading, and LighthiU stress (quadrupole)

sources of propeller noise, respectively.

G = G(x, t/y, r) in Eq. (la) denotes the free-space, moving-medium Green's function

which can be shown to have the following form:

G _.

1

4_r_R
,_(t- _"- gcR/Oo)

1
9c(r)= _(,_ MoR),

P6

= M2 1/2_(_) ( o_+ _)

M0_@) = M0_ej, _0 -- (1 - M_i )1/2 (sum over j)

ei(r ) = (zi - YJ) R(r) = Ix - y(r)l.
R '

(2a)

(2b)

(2c)

(2d)

Here M0_ is the medium convection Mach number in the radiation direction, R is the dis-

tance between observer and source, e i is the component of the unit vector along radiation

direction, and Co is the medium ambient speed of sound. Parameters gc and i¢ represent

the effects of medium convection on the retarded time and spherical spreading rate, re-

spectively. The explicit dependence of various parameters on source time r is indicated

where necessary.
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In general, because propeller may be operating at an angle of attack to the oncoming

flow, the 1-axis is chosen to coincide with the propeller shaft (see Fig. 1) in order to simplify

the description of the source motion. As a result, motion of the sources is confined to the

transverse planes described by the 2- and 3-axes. Therefore, it is readily seen that

M01 = M0 cos a, M02 = 0, M08 = M0 sin a (3)

where a is the propeller angle of attack with respect to oncoming flow as depicted in Fig.

(1).

Provided that blade geometry, aerodynamic loading, and flow field about the propeller

are known in sufficient detail, acoustic pressure p(x, t) may be computed directly from Eq.

(la) for any observer location. This, of course, is the so-called time domain approach

which entails solving transcendental equations for source time v. Alternatively, one could

use the frequency domain approach, which involves expanding p(x, t) in terms of its Fourier

harmonic components pl(x), i.e.,

-[-00

p(x,t)= _ p,(x) e -imt (4a)
l_ _OO

with the individual harmonic components given by:

p_(x)= pT,(x) + p_,(x) + p_(x) (4b)

where

e imt povn ds(y) dr dt (4c)
pT)(x) = _ .Io (,.) Dt

.r-,o ]e imt fnj _xj ds(y) dr dt (4d)P_:t(x) = _ .,o (,-)

°r''°[i;:z ]e ira' Tjk O_O-zk dy dr dt (4e)p_(x)= _,o c_)

in which f_ is the propeller angular speed, p_, Pcl and Pet denote contributions to the

harmonic component Pl from the thickness, loading, and quadrupole sources, respectively.

In writing Eqs. (4c-4e) the derivatives of G with respect to source coordinates from Eq.

(la) have been replaced by its derivatives with respect to observer coordinates through use

of the relations

OG OG DoG DoG
-- = -_ (5)

- Ozj ' Dr Dt

Using the usual phase relationship arguments it can be shown that, given B identical

blades, only harmonic components for which l = mB (where m is an integer) contribute
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to the infinite sum in Eq. (4a). This contribution is simply B times the contribution of

a single blade. Therefore, from here on B will explicitly appear in expressions for the

harmonic components P_',,,B, P_:,,B, and pQ,,,_. Correspondingly, S and V, respectively,

will denote surface of, and volume around, a single blade.

To further simplify Eqs. (4c-4e) the spatial derivatives O/Ozj and 02/OziOxk of G

may be rewritten in terms of the temporal derivative O/Ot through the use of the chain
rule:

OG
z=--_= v_(t)a (6a)
vx i

o_e [0va(t) ]0x_0_---S= t 0x_ + v_(t)vk(t) a (_b)

1 o 1 (_ge_+M0.M0_)] (6c)

where the auxiliary derivative operator :Dj(t) has been introduced for notational brevity.

The temporal derivatives can now be removed using integration by parts, and the integral

over t, which involves a delta function, can then be easily evaluated to yield

pr_.(x) = _,0 _.) = (Ta)

PL:,.B(X)= _-_'r2j0 (*) = Rt / ds(y) dr
(7b)

(7c)

where Q_0 Q(_) and Q_) represent the expressions for the strengths of thickness, loading

and quadrupole sources, respectively. Note that the Q!.t) s for each source type are organized

according to which power of radiation distance R they multiply. Note also that the limits

on the integration over r have been changed to reflect the fact that an interval of size

2_/ft in t is mapped exactly into an interval of size 2_r/_ in r. The expressions for source

strengths _e given by

Q_) = -_ imBFt p°v" [ 1-1M°_(ei -gcM°_)]to

Q(_) = 1----_ pov. Mo¢ (_2oej + MoRMoj)

(8a)

(Sb)
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0(2)= 1 imB f j( j-goMo ) (8c)

1

= Ins + Mo,,Mo ) (8d)

_(t) ,At ,_Q_)= 1 Tjk A_t)_jj, + A_t)ejek +'"3 "_o_'_'o.
_F+2

A_ 1) 0,

A 3)=

+.4o +Mo,

,A(2 1) "- 1, A (') = g_,

,_2) : 3_02 ' ,A(3 2) -- -(1 -{- 2ioRgc) ,

t = 1,2,3 (8e)

A_ 1) - -go,

A_ 2) = 2Mort - fl_)gc,

A_ 3) = 3fl0_Uon.

(sf)
where sums over the indices j and k are assumed. It should be noted that, in general,

normal surface velocity vn, loading amplitude f, and the LighthiU stress tensor Tit depend
on source time r.

Once source strength distributions Q!.t.) are estimated, what remains is to carry out

the integrations in Eqs. (7a-7c). Ordinarily, the order of integration in these equations is

reversed and the integral over r (which represents the radiation efficiency of the acoustic

source) is computed first. Since for general geometries and source strengths this integral

is not tractable analytically, it is usually computed approximately for near- or fax-field

observer locations for which the integrand may be significantly simplified. The result is

given in terms of the appropriate Bessel functions. The remaining surface (or volume)

integral is then carried out using a quadrature scheme. Alternatively, as was mentioned

earlier, surface (or volume) integral may be calculated asymptotically in the manner sug-

gested in Ref. 6. In this approach, which is particularly useful when the blade count B (or

more appropriately the harmonic index rnB) is large, the method of stationary phase is

utilized to show that, asymptotically, most of the radiation from blade surface (or volume

surrounding it) comes from the neighborhood of special points called the stationary phase

points. As was pointed out in introduction, this approach forms the basis of theory pre-

sented in Refs. 5 and 7. The utility of this approach hinges on determining, analytically,

the stationary phase points - a difficult task when dealing with blades having complicated

geometries.

This difficulty, however, can be circumvented by applying the large-blade-count ap-

proximation to integral over r instead. In other words, the idea is to find the radiation

efficiency of each source asymptotically. This is accomplished by evaluating the r integral

using a modification to the standard steepest descent and saddle point methods. The

advantage of this approach is that it is applicable to general geometries.

In this paper the derivation for the zero angle of attack case (a = 0) will be outlined.

The extension to nonzero angle of attack follows the analysis described in Ref. 8. For the

sake of brevity the final formula will be given in terms of a generic source strength Q and
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a generic radiation distance "factor" 7_. The resulting expression is therefore applicable

to any Q!.t.) and R t dependence.

For practical considerations it is more convenient to preserve the order of integration

in Eqs (7a-7c) and carry out surface (or the volume) integral first. To do so, we begin

by dividing blade surface (or volume surrounding it) into a number of small surface (or

volume) elements. Let that number be Ns, where the subscript s indicates a particular

source element under consideration. If the typical elemental size is sufficiently small,

integrand may be assumed to be constant over the extent of element and thus surface

(or volume) integral may be approximated by some appropriate "mean value" of integrand

times the elemental surface area (or volume). If the mean value is chosen to be the value of

integrand at the geometric center of element, designated Ym, the error in this approximation

is O(L 2) for a given Ns where L = [y - Ys]max. Of course, error could be made arbitrarily

small by choosing a large enough Ns, which would reduce the effective size of each element.

Therefore, the generic hasznonic amplitude PamB (X) may be written as:

1 N,

_Dsras(X ) _' _ _ A s e -imB01c" I s (9a)

s=l

fo2" Qs(O) emB,_.(o) dO (9b)rs=

(9c)

0 = f_r + Cs - ¢,
MtipMot

- /37,, (=,- u,.) + ¢.- ¢ (9d)

Mtip bs = 2rrs (9e)

x, = -- = (I- (9f)

where (zl, x2, zs) and (Yl,, y2o, ys.) have been replaced by their cylindrical polar counter-

parts (xl, r, ¢) and (y_., rs, ¢s), respectively. Furthermore, the integration variable r is

now replaced by a new variable 0. Mtip is the tip rotational Mach number (i.e., R,pn/Co)

and qc, is a convective phase factor representing the collection of phase terms which do

not depend on r. Qs(0) and T_s(0) are the generic source strength and radiation distance

factor, and As is elemental area (or volume) for the sth element. In order to simplify

the notation, we suppress the explicit dependence of various variables on Ys, the centroid

of sth element. ¢s(0) is the canonical phase function for a propeller operating at zero

angle of attack, with as and bs representing a combination of geometric, convective and

kinematic factors. Note that in deriving Os(0), no assumption regarding the geometry of

propeller blade or the location of observer has been made. For this reason, the subsequent

results apply to arbitrary geometries and observer locations. In the above expressions both

observer and source spatial coordinates are nondimensionalized by the propeller tip radius

Rtip. (Note that M0t = M0 for zero angle of attack case.)
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Now, for a typical propfan B = 8. Thus even for the blade-passing-frequency (BPF)

tone (i.e., m = 1) the integrand in Eq. (9b) is highly oscillatory. Nallasamy et al, i0 Who

considered only the thickness and loading noise contributions, employed a numerical inte-

gration scheme to calculate I,. Unfortunately, accurate computation of higher harmonics

requires an ever increasing quadrature resolution to capture the oscillatory nature of the

integrand and that can increase the computational cost substantially. The asymptotic

evaluation of I, for large roB, however, can be quite cost-effective.

In order to carry out the asymptotic evaluation, variable 0 must be allowed to be

complex and the integration path (i.e., [0, 27r]) be deformed into an appropriate contour.

Replacing 0 with the complex variable u = 0 + ia leads to a phase function _o(U) which

is now also complex. It is fairly straightforward to find the saddle points of ¢o(u) (i.e.,

¢'s(u) = 0) and the appropriate steepest descent contours. The easiest way to find the

saddle points is to define an auxiliary variable _ = cos u and rewrite '_'o(U) = 0 in terms of

(aob°/2)2 _2 _ b°_ + 1 - (aobs/2) 2 = 0 (lo)

where a° and b° were defined in Eq. (9d). Eq. (10) is clearly quadratic in _ and may readily

be solved. Thus for given observer and source locations _(u) has, in general, two simple

saddle points in the interval [0, 27r] which have different forms depending on whether the

component of the source relative Mach number in the direction of observer, Mr, is subsonic

or supersonic. The two are a complex conjugate pair if Mr < 1 and are real if Mr > 1.

When Mr = 1 (i.e., the "sonic condition") these two saddle points merge to give rise to a

single, second order saddle point. For a subsonic source, only one of the two saddle points

lies on the appropria2e s_eepest descent path. Hence only that saddle point contributes to

the integral. It should be noted that the integrand also has an infinite number of branch

points coinciding with those of ff,(u), of which only four lie in the region of interest. A

judicious choice of branch cuts guarantees that the contributions to the contour integral

along branch cuts in the u-plane is exponentially small compared with the contributions

from the neighborhood of saddle points. The location of the appropriate saddle points,

branch cuts, and steepest descent contours for typical source locations are shown in Fig.

2. Note that the choice of steepest descent path depends on whether Mr is less than or

greater than unity. Also shown in this figure are the auxiliary descent contours needed

for deforming the original contour [0, 27r] into steepest descent contour(s). Due to the

periodicity of integrand in 0, the contributions from these contours cancel each other out

exactly.

For a given observer location and operating condition, the asymptotic structure of I,_

for a source with Mr = 1 is different from that for a source with Mr _ 1. In fact it, is fairly

easy to show that the asymptotic expansion is given in terms of the inverse l/s-powers of

parameter mB for a "sonic" source and in terms of the inverse 1/2-powers of rnB for a "non-

sonic" one. Since there is no simple way of constructing a composite expansion from these

two expansions to allow for a smooth transition through the sonic condition, they are not

very convenient to use. However, this difficulty may be avoided altogether by developing

a uniform asymptotic expansion using a theorem derived by Chester et al. 11 The details

of the methodology may be found in Bleistein and Handelsman. 1_ The basic idea is to
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map, conformally (say, v _ _), phase function Os(V') into a much simpler function (i.e., a

cubic polynomial) which exhibits the relevant features of the original phase function. The

region of interest in complex v-plane (i.e., the region containing saddle points and steepest

descent contours) is correspondingly mapped into a region in the complex (-plane. The

standard steepest descent and saddle point methods axe then applied to the integral in the

(-plane. The key definitions and parameters, along with the final result, are summarized

below.

The cubic is given by:

(::a)

: [¢,(r,.+)+ e.(_:)] (::b)

7,_= 3 [_,(_+)_ ¢.(r,7)] (::c)

where v + and t_: denote the locations of saddle points of (I,, in complex v-plane and #,

and 7, are parameters defining the cop.formal map. Note that 7, as given above can take

on three possible values or branches. The theorem in Ref. 11 guarantees that one of the

branches defines the desired conformal map. For integral Is the branch chosen is the one

for which 7s2 is purely real. With these parameters determined, the map can be constructed

and the uniform asymptotic expansion carried out. In principle, expansion of integral I,

could be developed to an arbitrary order in the parameter roB. However, it turns out that

for most applications the first term provides a very reasonable approximation even at BPF

tone (i.e., m = 1). Therefore, in the subsequent analysis only the first term is considered.

After a fair amount of algebra the final result can be written as the following formula:

Ai ((ms)'/'7. _) A'i (('s)=/_7"_) } (12a)/a -_ 2tie rest'" d,o (mB)l/3 + ds, (roB)2� 3

d,°= ro(7,) + ro(-7.) d.. ro(,.) - ro(-7,) (:2b)
2 ' = 27,

Q,(_(O) dr, du 7,2 - (2

r0(() = _,(_(¢)) _(, 6¢ - _',(_(<)) (:2c)

where Ai and A_ are the Airy function and its derivative, respectively, and d, 0 and d, t are

coefficients in the asymptotic expansion. It is worth mentioning that :t=7, corresponds to

the locations of saddle points t/_ in (-plane. For any observer location, Airy function and

its derivative provide a smooth transition from the region of blade for which Mr is less than

unity to the region of blade for which Mr is greater than unity. For 7, = 0 (i.e., a "sonic"

source) Ai and A' i are O(1) and consequently Is is proportional to inverse 1/s-powers of

roB. For 7, _ 0 (i.e., a "non-sonic" source) and large mBAi is O((mB) -_/6) and Ai'

is O((,nS)ve). Consequently, Is is proportional to inverse 1/2-power of mB as expected.

After substituting for Is in Eq. (9a) from Eq. (12a) and adding the contributions from all

the Ns elements, Fourier harmonic component PmB(X) can be calculated.
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Results and Discussion

In order to assess the accuracy of the asymptotic formula given by Eq. (12a), we next

consider its predictions for a test problem. The test case is that of a propfan operating

at cruise conditions. The necessary aerodynamic input to the acoustic model is computed

using an Euler CFD code developed by Adamczyk (see Celestina et all3) which provides

both the loading distribution on propfan blades and flow field around the propfan. The

CFD computations are for the flow conditions which roughly correspond to the wind tunnel
conditions in a series of acoustic measurements carried out at NASA Lewis Research Center

by Dittmar and Stang 14 for a scale model SR-7A propfan operating at simulated cruise

conditions. All of the acoustic calculations presented in this paper are for BPF tone noise.

As was previously mentioned, the asymptotic formula is applicable to all three types

of sources represented in Eqs. (7a-7c). The application of formula to thickness and loading

noise sources (i.e., surface sources) is quite straightforward since the spatial extent of their

distribution is clearly defined. However, the "effective" spatial extent of the distribution of

quadrupoles (i.e., volume sources) is not known a priori. To determine this effective spatial

extent a series of calculations employing the asymptotic formula for the quadrupole sound

pressure level (SPL) was carried out using a series of progressively larger computational

volumes surrounding the propfan blade.

The results of this study are shown in Fig. 3 where the predicted sideline directivities

of quadrupole SPL (at BPF) for different computational volumes are plotted for near-field

observer positions located at a distance of 1.6Rtip from the axis of propfan, and extending

from 1.ORtip forward to 1.ORtip aft of the plane of rotation. The medium convection (free

stream) Mach number M0 is 0.8 and the advance ratio of propfan is 3.06, which together

result in a (relative) tip helical Mach number (Mt,pa.= (Mg+Mt2_t,) 112) of 1.15. As a matter

of convenience the computational volumes were chosen to coincide with the subsets of

the CFD computational grid. In all, four volumes were considered. The passage volume,

denoted V0, extends axially from the blade's leading edge to its trailing edge and extends

radially from hub to tip. Volume V1 extends axially to about 0.6Rtip, volume V2 to 2.0Rtir,

and volume V3 to 4.0RtO, in both the forward and aft directions. The latter three volumes

also extend a distance of 0.5Rtip beyond the blade tip in the radial direction. All four

volumes also span the blade passage halfway to the adjacent blades in the circumferential

direction on each side. For each volume the contributions to noise field from Lighthill

quadrupole sources contained within the volume were computed and plotted.

Two important conclusions drawn from the plot in Fig. 3 are that (i) the predicted

peak quadrupole SPL occurs in the vicinity of plane of rotation and (ii) that as far as the

peak noise levels are concerned, volume V1 is optimally suited for acoustic calculations

since the larger volumes produce levels which are generally no more than I dB different from

those for volume V1 (the results for volumes V2 and V3 are virtually indistinguishable).

The erratic behavior of predicted SPL for the baseline volume V1 at the axial observer

locations aft of the 0.6Rtip position is a result of the choice of computational volume.

Because, these observer locations lie near the boundary between V1 and V2, in the baseline

case they only receive contributions from sources located upstream of that boundary (i.e.,

those inside V1 only). Clearly, as computational volume is extended and contributions

from sources downstream of that boundary (i.e., those inside V2 but not inside V1) are
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also taken into account, more realistic levels are produced and the "kink" in the SPL
disappears. Furthermore, in Order to verify that the kink is not an artifact of asymptotic

calculations, a full numerical integration of radiation efficiency integral for volume V1 was

performed at a few discrete locations and the results plotted as solid symbols in Fig 3. The

comparison between asymptotic and numerical calculations is strikingly good and serves

to demonstrate the accuracy of asymptotic calculations.

To further emphasize this accuracy, a comparison between the asymptotically and

numerically computed sideline directivity of total SPL (thickness + loading + quadrupole)

is presented in Fig. 4. The operating conditions and observer locations are the same as

those in Fig. 3. The quadrupole contribution from volume V1 was considered in this

comparison. The numerical integration was carried out for only five observer locations to

limit the computational time. Again, the agreement is very good with deviations of less

than 1 dB in plane of rotation between asymptotic and numerical results. For comparison,

the corresponding sideline directivity for the noise generated by surface sources is also

shown. The agreement is quite good with a maximum deviation of about 2 dB occurring

at about 0.5Rtip downstream of plane of rotation. A detailed examination of the individual
source type contributions in this region revealed that on the one hand the discrepancy is

partly due to deviations (of around 2 dB) between the asymptotically and numerically

calculated loading noise predictions, and on the other to the strong sensitivity of the sum

of thickness and loading noise SPLs to their individual contributions. It is also interesting

to note that the noticeably higher total SPLs as compared with those for surface sources

indicate that quadrupole noise levels are rather substantial for high speed propellers and
must be taken into account.

Finally, to demonstrate the utility of the method, a series of acoustic calculations was

performed to investigate the sensitivity of the maximum total SPL generated by propfan

as a function of its tip helical Mach number Mtlph. The increase in Mtiph was achieved by

holding the advance ratio constant (at 3.06) and increasing the free stream Maeh number

M0. The range of tip helical Mach numbers studied was between 0.9 and 1.4 with 11

different Mach numbers considered within this range. The aerodynamic input in each

case was computed using the Euler code mentioned earlier. As before, the computational

volume chosen for acoustic calculations was V1. Twelve observer positions distributed

on both sides of plane of rotation were considered. These positions correspond to the

microphone locations in Ref. 14. In each case the asymptotically-predicted maximum SPL

was noted amongst observer positions considered. In all cases this maximum occurred in

the neighborhood of plane of rotation.

The peak SPLs are plotted versus Mtirh in Fig. 5. To see the trend, a quadratic

curve is fitted to the predicted values (solid circles). The predicted trend indicates that
maximum SPL does not increase monotonically with increasing tip helical Mach number,

but rather that it levels off beyond Mtiph of about 1.25. This behavior is consistent with
the trends observed in the measurements reported in Ref. 14. As seen from the inset in

Fig. 5, measured peak SPLs generally reach a plateau past a tip helical Math number of

about 1.25. Different symbols in the inset represent peak SPLs corresponding to different

propfan blade setting angles while the lines are quadratic curve fits through the points.

The advance ratio in all three cases is 3.06. In this paper no attempt was made to carry
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out a detailed comparison with the experimental data due to the ambiguities which exist in

matching the experimental operating conditions with their CFD counterparts. For the sake

of comparison, however, the maximum SPLs as predicted from only the surface sources

are also plotted (open circles) in Fig. 5. It is interesting to note that, in contrast with

total noise, predicted peak noise arising from surface sources, tends to rise monotonically

with the increasing tip helical Mach number. An examination of theoretical predictions

shows that, the difference in behavior between peak SPLs from surface and total sources

may be traced to the mutual phase relationship between surface and volume sources. For

M,v, < 1.25, surface and volume sources radiate essentially in phase. Therefore, they

contribute additively to total SPL. For M, vh > 1.25, however, surface and volume sources

radiate out of phase. This leads to mutual cancellation between the two types of sources

and, as a result, in reduced peak SPLs.

It is worth mentioning that the CPU times required for these asymptotic noise calcu-

lations were generally an order of magnitude smaller than those for full numerical integra-

tion. The CPU time savings would be even more significant for higher harmonics of BPF

where numerical integration requires a progressively finer quadrature step size. In contrast,

asymptotic calculations would incur a nominal increase in CPU time over that required

for the BPF tone calculations, since saddle point locations are independent of the mode

number. Furthermore, due to the very nature of the asymptotic expansion, predictions

for the higher harmonic will be even more accurate when compared with numerical results

(see Ref. 8).

Concluding Remarks

A large-blade-count asymptotic theory which allowsfor accurate and efficientcalcula-

tion of noise fieldof high speed propellers was presented. The theory does not relyon the

simplifying assumptions usually employed in other propellernoise analyses. A closedform

expression involving Airy function and itsderivativegives a uniform representation of the

noise fieldof a source regardlessof whether itscomponent of the relativeMach number in

the directionof the observer islessor greater than unity. The levelsof allthree types of

propeller noise sources (i.e.,thickness,loading, and Lighthillquadrupoles) were computed

for a realisticpropellergeometry and operating condition at a very reasonable computa-

tionalcost. The resultsindicate that near-fieldquadrupole radiation israther substantial

in vicinityof plane of rotation and can significantlyinfluence total sound pressure levels

radiated by a supersonic propeller. Furthermore, inclusionof quadrupole contribution in

predicted levelsseems to generate trends which are in qualitativeagreement with exper-

imental measurements of sensitivityof maximum SPL to increases in tip helicalMach

number. The preliminary resultsshown here indicate that the present method provides a

useful theoreticaltool in propeller noise research.
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